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Introduction

* Application of Brain-Computer Interface (BCI)
* Instruction decoding [NeuraLink 2021]
* Emotion recognition [Edgar 2020]

* Sematic decoding

* Visual information reconstruction [Takagi 2023]
» Language information reconstruction [Makin 2020]

Fig: Neuralink’s monkey use BCI to Fig: Emotion recognition
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Background

* Existing language BClIs
* Pre-defining a series of semantic candidates
e Limitations
* A limited number of semantic candidates (usually 2-50)
* High task dependency

sunny

Feature

Pre-defined

extraction :
> ramy . semantic
= '

candidates

apple
Fig: Language BCls by pre-definition and post-hoc selection/classification
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Background

* Emergence of generative language models (L Ms)
* Reconstructing mental language 1s difficult
e The LM might be able to provide contextual knowledge
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Background

* A language BCI with generative model [Tang 2023 ]
* Pre-generation with post-hoc selection
* Limitations
 Brain information is not involved in the language generation phase

e Still use a limited amount of candidates
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Fig: Language BClIs by pre-generation and post-hoc selectio
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Background

* Language in LM and language in the Brain

* Brain and LM might have similarities in language processing
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Fig: The representation in different layers of
the language model have similarities to the
human brain. [Mariya 2019]
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Fig: The physical neurons in the brain exhibit
synchrony in activation with the neurons in
language models. [Liu 2023]
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Background

* Is the similarity more pronounced in larger models?
* Scaling laws when mapping brain representations to computational representations
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Fig: Larger correlations in audio model with a
larger parameter size. [Anntonello 2023]
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larger parameter size. [Anntonello 2023]




Motivation

* Designing BCls with direct language generation feature

* Limitations of existing work:
* Classification-based setting
e Limited candidate set and limited performance
* Ignoring the potential relationship between brain and LLM

* Can representation in the brain and in the LLM be jointly modeled?




Method

» Language generation by jointly modeling of brain and the LLM (BrainLLM)
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Method

» Language generation by jointly modeling of brain and the LLM (BrainLLM)
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Method

» Language generation by jointly modeling of brain and the LLM (BrainLLM)
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Method

» Language generation by jointly modeling of brain and the LLM (BrainLLM)

Brain embedding and text prompt
embedding are combined as input
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Method

» Language generation by jointly modeling of brain and the LLM (BrainLLM)

Gradient descent only on the special
tokens and the brain decoder
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Method

* Language generation by jointly modeling of brain and the large language
model (BrainLLM)

 Control models:
* PerBrainLLM: BrainLLM with brain input randomly sampled

* StdLLM: the standard LLM with only text input
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Evaluation

 Evaluation protocols:

* Pairwise accuracy:

» comparing the likelihood of generating the perceived continuation
1, if PprainLLM > PperBrainLLM

L i,e,, Pairwise ACC = 0. else

* Language similarity metrics:
* Bleu, WER, Rouge, perplexity/surprise

* Human evaluation:
* pairwise preference judgment from human annotators

15



Results

* Case study:
Brain response to perceived

Text input in BrainLLM  continuation as BrainLLM input
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Results

* Pairwise accuracy:
* BrainLLM outperforms PerBrainLLM and StdLLM
* PerBrainLLM is a stronger control than StdLLM

* PerBrainLLM contains brain prompt that make the LLM generate content more aligned with
the distribution of tokens in the training set
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Results

* Analysis regarding surprise score:

Higher surprise, worse performance Higher surprise, BrainLLM gains more

when compared to PerBrainLLM
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Fig: Pairwise accuracy of BrainLLM v.s.
PerBrainLLM in terms of different surprise




Results

* Analysis regarding length of text prompts:

Surprise score
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N ||

Pereira's
Huth's
—— Narratives

0-7 7-8 8-10 10-11 11-13 13-15

Length of text prompt

15-17

Fig: Surprise w.r.t. length of text prompts

17.0-

0.75

o©
~
o

0.65

0.60

Pairwise accuracy

0.55

0.50

19

Shorter text prompts, more
performance gain with BrainLLM

*.
*
x
* *
*
*
*
* < 4 i
*
Pereira's
Huth's
—— Narratives
—==- baseline (PerBrainLLM) _ .
0-7 7-8 8-10 10-11 11-13 13-15 15-17 17.0-

Length of text prompt

Fig: Pairwise accuracy of BrainLLM v.s.
PerBrainLLM w.r.t. length of text prompts




Results

* Analysis regarding the parameter size of LLM:

LLM with more parameters yields BrainLLM gains even more when
better performance using LLLM with more parameters!
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Results

* Analysis regarding region of interests (ROIs):

* Broca: language production and grammar processing pra®
e PrCu: language memory, and language consciousness @‘ﬂ“‘“a“

* PFC: decision-making s encod qver'® app°o

e AC: auditory information processing Seﬁ‘a“ ‘(\"‘oe

* AG: semantic and phonological processing
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Future application: BCI for Search

* How can BCI help search
* Query augmentation via decoding information need from brain
* Feedback modeling by decoding

Understand information need
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Future application: more

* BrainLLM for language BCls

» Language construction without pre-generation
* Integration with BClIs that utilize motor representations

* Neurolinguistic research
* Quantification ability on the generation likelihood of textual content
* E.g., no longer need manipulation for neurolinguistic experimental design

 Personalized LLM

* Content deemed surprising by LLMs could potentially be corrected by
individual’s brain recordings
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Ethics

* Reconstruct language from the human brain
* Challenging the deeply ingrained notion of the mind as a private sanctuary
e Currently at a very early stage

* Direct language generation feature
* Without human-controlled pre-definition step
* May decode contents that participants may wish to keep private

* What should we do?

* Processing and remove privacy content from the output
* Training a safe brain decoder
* Reviewing the output by the participant
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