

Language Generation from Brain Recordings

Ziyi Ye Tsinghua University 2024.3.12

Introduction

• Application of Brain-Computer Interface (BCI)

- Instruction decoding [NeuraLink 2021]
- Emotion recognition [Edgar 2020]
- Sematic decoding
 - Visual information reconstruction [Takagi 2023]
 - Language information reconstruction [Makin 2020]

Fig: Neuralink's monkey use BCI to play games [Cooney 2021]

Fig: Emotion recognition [Edgar 2020]

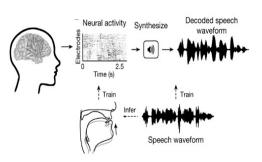


Fig: Speech decoding [Makin 2020]

2

A HERSITI

Background

Existing language BCIs

- Pre-defining a series of semantic candidates
- Limitations
 - A limited number of semantic candidates (usually 2-50)
 - High task dependency

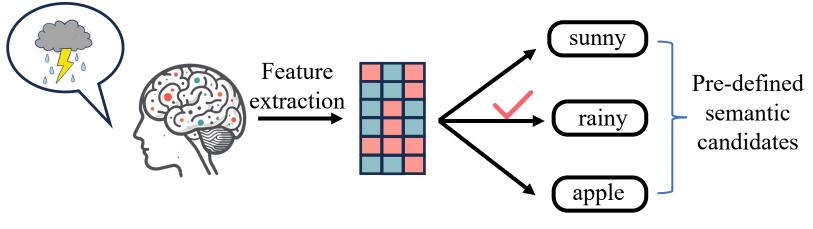


Fig: Language BCIs by pre-definition and post-hoc selection/classification

• Emergence of generative language models (LMs)

- Reconstructing mental language is difficult
- The LM might be able to provide **contextual knowledge**

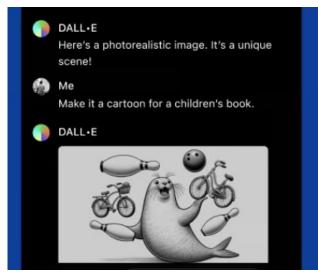


Fig: ChatGPT + DALL-E

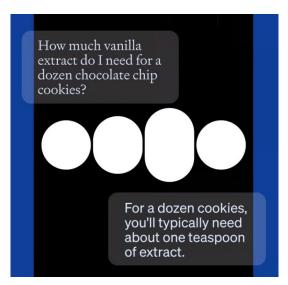
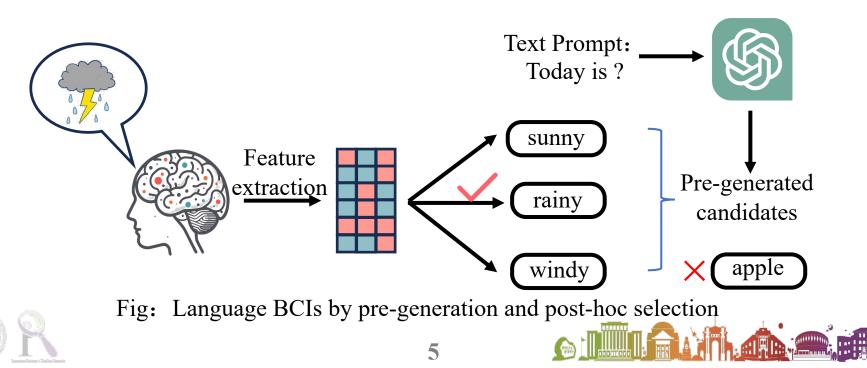


Fig: ChatGPT + speech synthesis

- A language BCI with generative model [Tang 2023]
 - Pre-generation with post-hoc selection
 - Limitations
 - Brain information is not involved in the language generation phase
 - Still use a limited amount of candidates



• Language in LM and language in the Brain

• Brain and LM might have similarities in language processing

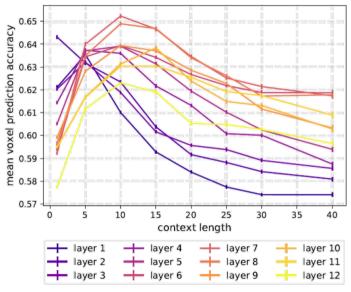


Fig: The **representation** in different layers of the language model have **similarities** to the human brain. [Mariya 2019]

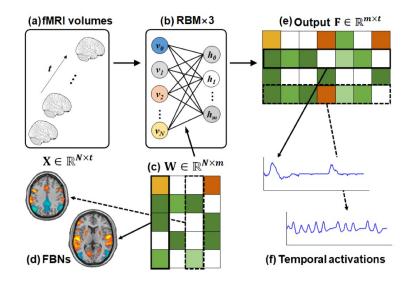


Fig: The **physical neurons in the brain** exhibit synchrony in activation with the **neurons in language models.** [Liu 2023]

• Is the similarity more pronounced in larger models?

• Scaling laws when mapping brain representations to computational representations

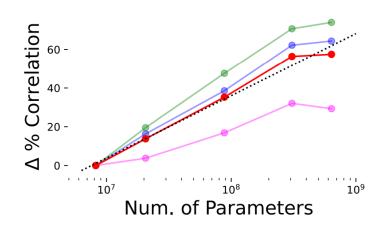


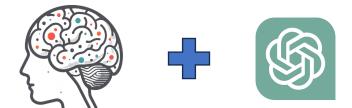
Fig: Larger correlations in audio model with a larger parameter size. [Anntonello 2023]

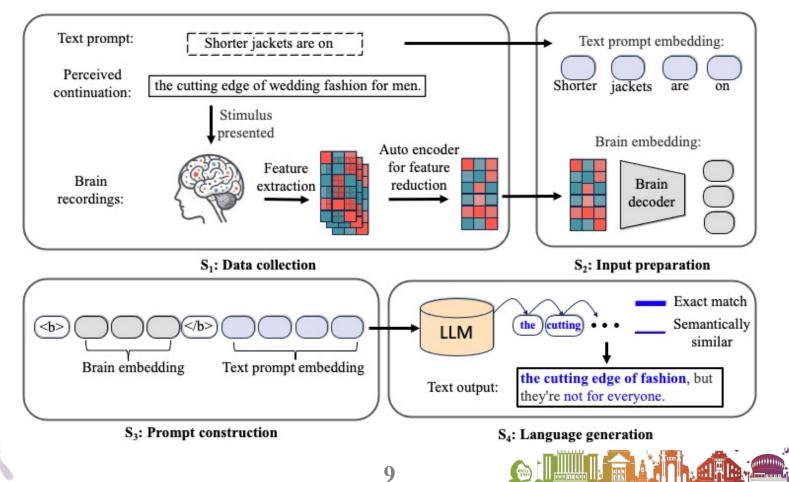


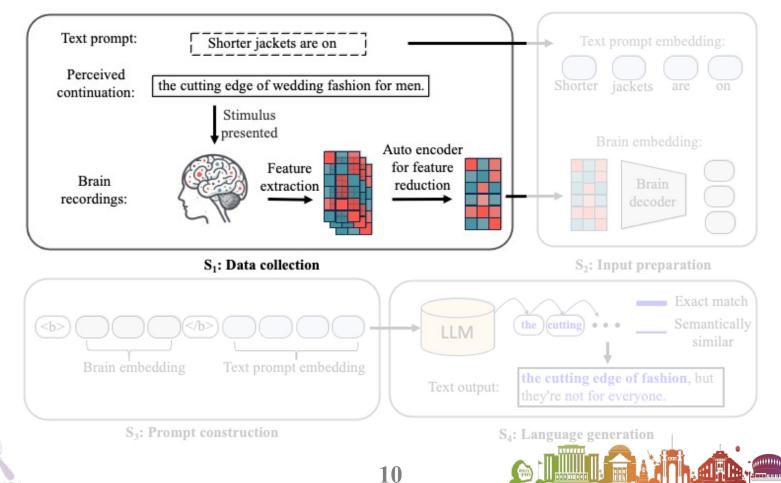
Fig: Larger correlations in language model with a larger parameter size. [Anntonello 2023]

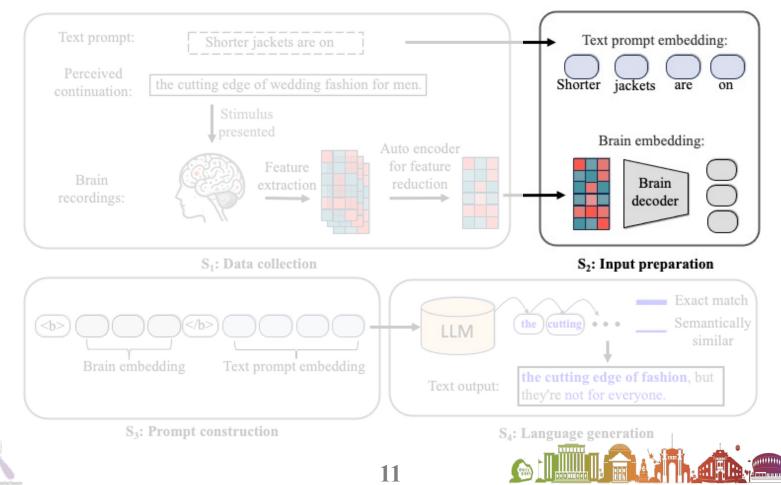
Motivation

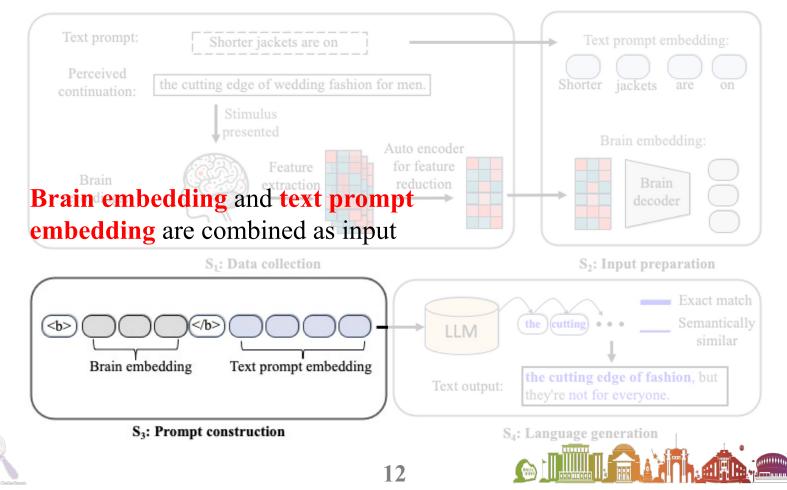
- Designing BCIs with direct language generation feature
- Limitations of existing work:
 - Classification-based setting
 - Limited candidate set and limited performance
 - Ignoring the potential relationship between brain and LLM
- Can representation in the brain and in the LLM be jointly modeled?

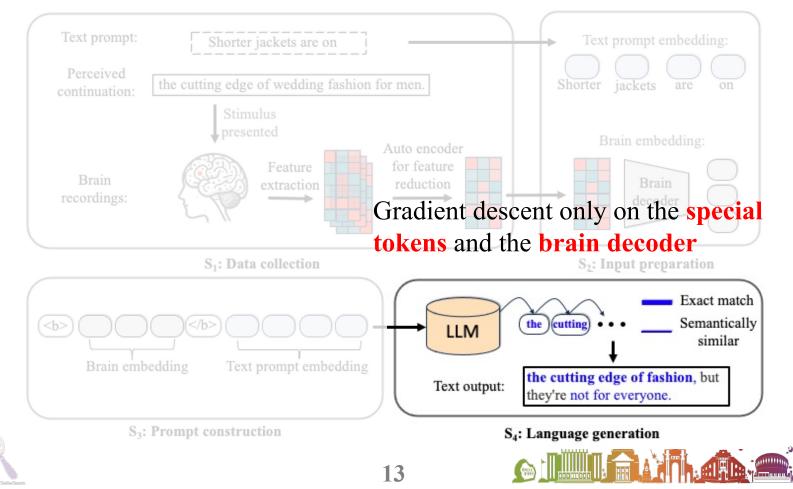




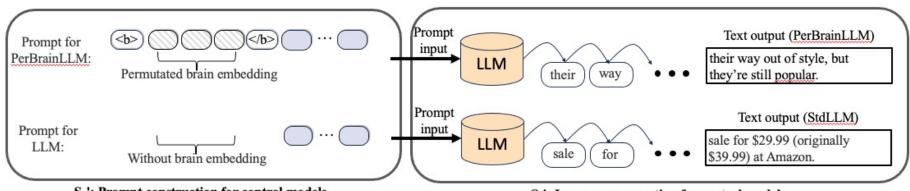








- Language generation by jointly modeling of brain and the large language model (**BrainLLM**)
- Control models:
 - *PerBrainLLM*: BrainLLM with brain input randomly sampled
 - *StdLLM*: the standard LLM with only text input



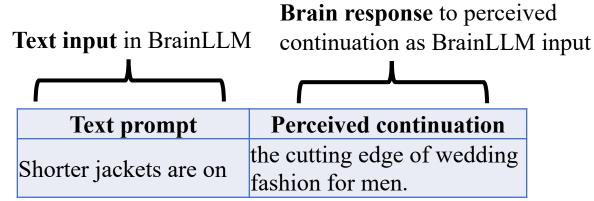
 $\mathbf{S_{3}'}:$ Prompt construction for control models

 $S_4 \ensuremath{^{\prime}}\xspace$: Language generation for control models

Evaluation

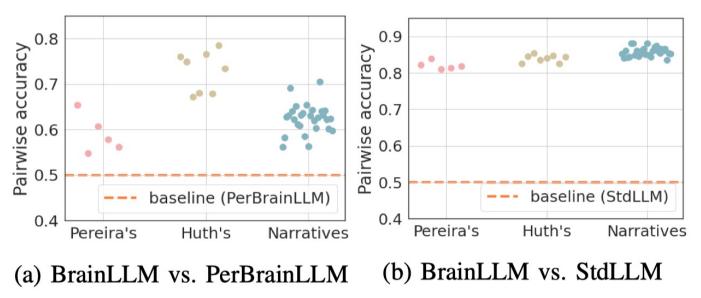
- Evaluation protocols:
 - Pairwise accuracy:
 - comparing the likelihood of generating the perceived continuation
 - i.e., Pairwise ACC = $\begin{cases} 1, & \text{if } P_{BrainLLM} > P_{PerBrainLLM} \\ 0, & \text{else} \end{cases}$
 - Language similarity metrics:
 - Bleu, WER, Rouge, perplexity/surprise
 - Human evaluation:
 - pairwise preference judgment from human annotators

• Case study:



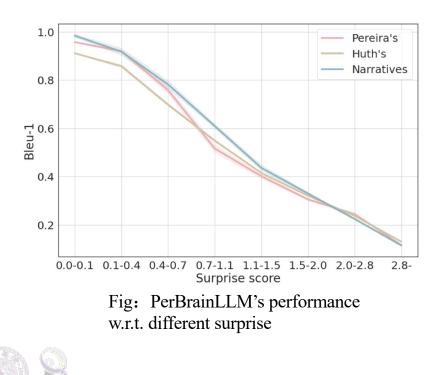
BrainLLM	PerBrainLLM	StdLLM
the cutting edge of fashion, but they're not for everyone.	\mathbf{h}	sale for \\$29.99 (originally \\$39.99) at Amazon.

- Pairwise accuracy:
 - BrainLLM outperforms PerBrainLLM and StdLLM
 - PerBrainLLM is a stronger control than StdLLM
 - PerBrainLLM contains brain prompt that make the LLM generate content more aligned with the distribution of tokens in the training set



• Analysis regarding surprise score:

Higher surprise, worse performance



Higher surprise, BrainLLM gains more when compared to PerBrainLLM

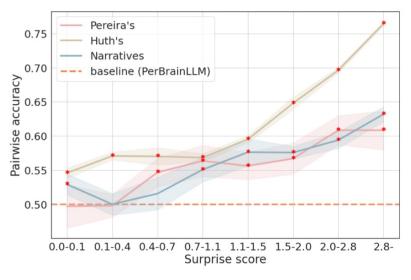
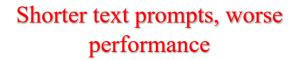


Fig: Pairwise accuracy of BrainLLM v.s. PerBrainLLM in terms of different surprise

• Analysis regarding length of text prompts:



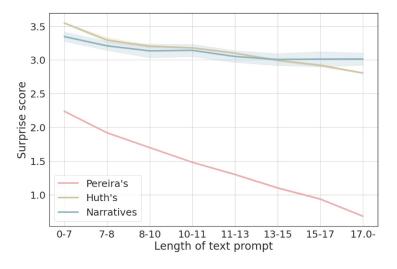


Fig: Surprise w.r.t. length of text prompts

Shorter text prompts, more performance gain with BrainLLM

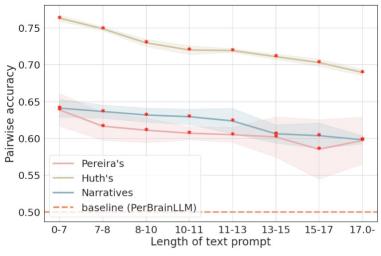


Fig: Pairwise accuracy of BrainLLM v.s. PerBrainLLM w.r.t. length of text prompts

• Analysis regarding the parameter size of LLM:

LLM with more parameters yields better performance

LLM backbone	Model	BLEU-1(↑)	ROUGE-1(↑)
Llama-2 (7B)	StdLLM	0.2415*	0.2133*
	PerBrainLLM	0.3249*	0.2875*
	BrainLLM	0.3333	0.2987
GPT-2-xl (1.5B)	PerBrainLLM	0.2772	0.234
	BrainLLM	0.2814*	0.2378*
GPT-2-large (774M)	PerBrainLLM	0.2605*	0.213*
	BrainLLM	0.2655	0.2182
GPT-2-medium (345M)	PerBrainLLM	0.2100	0.1649*
	BrainLLM	0.2118	0.1672
GPT-2 (117M)	PerBrainLLM	0.1866	0.1456
	BrainLLM	0.1846	0.1445

Fig: Language generation performance in Pereira's dataset with different number of LLM parameters

BrainLLM gains even more when using LLM with more parameters!

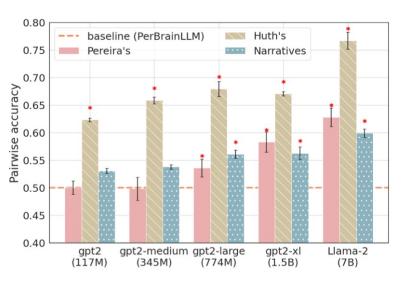
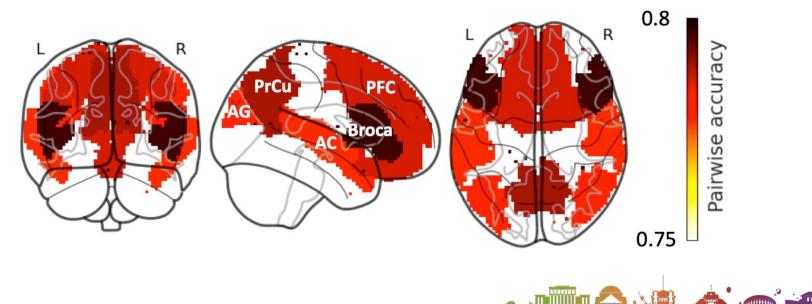


Fig: Pairwise accruacy of BrainLLM vs PerBrainLLM

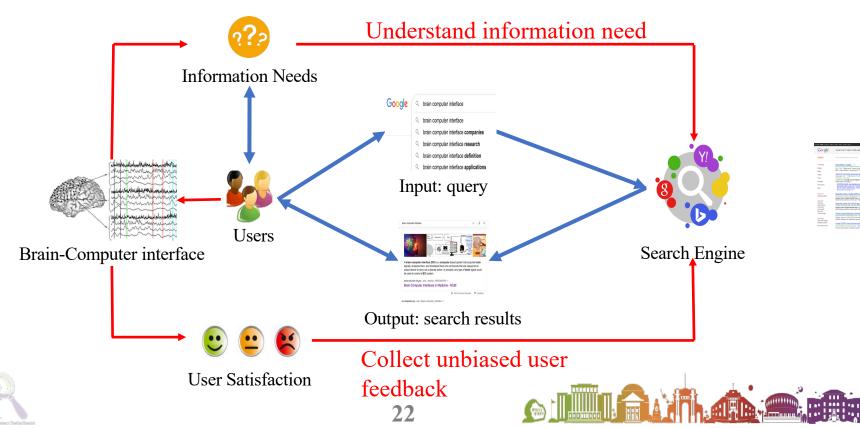
- Analysis regarding region of interests (ROIs):
 - Broca: language production and grammar processing
 - Semantics encoded in human brain • PrCu: language memory, and language consciousness might be overlapping
 - PFC: decision-making
 - AC: auditory information processing
 - AG: semantic and phonological processing



Future application: BCI for Search

• How can BCI help search

- Query augmentation via decoding information need from brain
- Feedback modeling by decoding



Future application: more

• BrainLLM for language BCIs

- Language construction without pre-generation
- Integration with BCIs that utilize motor representations

Neurolinguistic research

- Quantification ability on the generation likelihood of textual content
- E.g., no longer need manipulation for neurolinguistic experimental design

Personalized LLM

• Content deemed surprising by LLMs could potentially be corrected by individual's brain recordings

Ethics

• Reconstruct language from the human brain

- Challenging the deeply ingrained notion of the mind as a private sanctuary
- Currently at a very early stage

• Direct language generation feature

- Without human-controlled pre-definition step
- May decode contents that participants may wish to keep private

• What should we do?

- Processing and remove privacy content from the output
- Training a safe brain decoder
- Reviewing the output by the participant

Reference

- [Cooney 2021] Moving Forward with Brain Machine Interfaces.
- [Makin 2021] Machine translation of cortical activity to text with an encoderdecoder framework. *Nature neuroscience*.
- [Edgar 2020] EEG-based BCI emotion recognition: A survey. *Sensors*.
- [Takagi 2023] High-resolution image reconstruction with latent diffusion models from human brain activity. *CVPR 2023*.
- [Mariya 2019] Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). *Neurips 2023*.
- [Liu 2023] Coupling Artificial Neurons in BERT and Biological Neurons in the Human Brain. *AAAI 2023*.
- [Tang 2023] Semantic reconstruction of continuous language from noninvasive brain recordings. *Nature neuroscience*.
- [Antonello 2023] Scaling laws for language encoding models in fMRI. *Neurips 2023*.

Thanks for your listening!

